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Two-loop beta-functions of the sine–Gordon model
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Abstract. We recalculate the two-loop beta-functions in the two-dimensional sine–Gordon model
in a two-parameter expansion around the asymptotically free point. Our results agree with those
of Amit et al (Amit D J, Goldschmidt Y Y and Grinstein G 1980 J. Phys. A: Math. Gen. 13 585).

In this paper we recalculate the two-loop beta-function coefficients in the two-dimensional
sine–Gordon (SG) model in a two-parameter perturbative expansion around the asymptotically
free (AF) point. The study of the SG model in the vicinity of this point is especially important
since this region is used in the description of the Kosterlitz–Thouless (KT) phase transition in
the two-dimensional O(2) nonlinear σ -model, better known as the XY model†. This was the
motivation of the authors of [2], who have undertaken a systematic study of perturbation theory
in a two-parameter expansion around the AF point. They calculated the renormalization group
(RG) beta-functions up to the two-loop coefficients. The beta-function coefficients were also
calculated in [3] by a completely different technique based on string theory. The results found
in [3] differ from those of [2] at the two-loop level. The question of two-loop beta-function
coefficients was considered also in [4] for a class of generalized SG models. The results, when
specialized to the case of the ordinary SG model, agree with those of [3], but disagree with those
of [2]. In [5] the short-distance expansion of some SG correlation functions were calculated
using conformal perturbation theory. This allowed the extraction of the one- and two-loop
beta-function coefficients around the AF point. The resulting two-loop beta-functions differ
from all the previous results.

In view of the role the SG model is playing in the description of the KT phase transition
it is very important to know the correct two-loop beta-function coefficients. The purpose of
this paper is to show that, in fact, the two-loop results of Amit et al [2] are the correct ones.
We show this first by comparing the SG beta-function to known results in the chiral Gross–
Neveu model [6], which is known to be equivalent to the SG model at its AF point. We also
check the beta-function coefficients by considering the renormalization of 2n-point functions
of exponentials of the SG field.

Following [2] we consider the Euclidean Lagrangian

L = 1

2
∂µφ∂µφ +

m2
0

2
φ2 +

α0

β2
0a

2
[1 − cos(β0φ)] (1)

† For a review of the SG description of the KT theory, see [1].
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wherem0 is an IR regulator mass and a is the UV cutoff (of dimension length). UV regularized
correlation functions are calculated by using

G0(x) = 1

2π
K0

(
m0

√
x2 + a2

)
(2)

whereK0 is the modified Bessel function, as the φ propagator. Our strategy is slightly different
from [2], who really considered the renormalization of the massive SG model (1) of mass m0.
We treat m0 as an IR regulator mass and consider IR-stable physical quantities for which we
can take the limit m0 → 0 already at the UV regularized level (before UV renormalization).

The model (1) is renormalizable in a two-parameter perturbative expansion around the
point corresponding to the couplings α0 = 0, β2

0 = 8π . Writing

β2
0 = 8π(1 + δ0) (3)

the two bare expansion parameters are α0 and δ0 and physical quantities can be made UV finite
by the renormalizations

α0 = Zαα Zα = 1 + g1δ� + α2(g2�
2 + g2�) + δ2(g3�

2 + g3�) + · · · (4)

1 + δ0 = Z−1
φ (1 + δ) Zφ = 1 + f1α

2� + α2δ(f 2�
2 + f2�) + · · · (5)

whereα and δ are the renormalized couplings and � = lnµawithµ an arbitrary renormalization
point. The dots stand for terms of higher order in perturbation theory and the numerical
coefficients g1, f1 etc can be calculated by renormalizing correlation functions. The results of
Amit et al [2] are

f1 = 1
32 g1 = −2 f2 = − 3

32 g2 = − 5
64 g3 = 0 (6)

those of [3] and [4] are

f1 = 1
32 g1 = −2 f2 = − 1

32 g2 = − 1
32 g3 = 0 (7)

and finally [5] found

f1 = 1
32 g1 = −2 f2 = − 1

32 g2 = − 1
16 g3 = 0. (8)

We see that the one-loop coefficients are the same but not all two-loop coefficients agree. The
subject of this paper is to recalculate these numbers.

The RG beta-functions can be calculated by solving the equations

Dα = Dδ = 0 (9)

where, as usual, the RG operator is defined by

D = −a
∂

∂a
+ βα(α0, δ0)

∂

∂α0
+ βδ(α0, δ0)

∂

∂δ0
. (10)

One finds

βα = −g1α0δ0 − g2α
3
0 − g3α0δ

2
0 + · · · (11)

βδ = f1α
2
0 + (f1 + f2)α

2
0δ0 + · · · . (12)

It is well known that, in the case of several couplings, the higher beta-function coefficients
are not all scheme independent. Indeed, considering the perturbative redefinitions

α̃0 = α0 + c1α0δ0 + · · · δ̃0 = δ0 + c2α
2
0 + · · · (13)

one finds that in addition to the one-loop coefficients f1 and g1 only the following two two-loop
coefficient combinations are invariant:

g3 J = 2g2 − f2. (14)
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The RG analysis with two couplings can be made similar to the case of a single coupling
by changing the variables from α0 and δ0 to the pair Q and δ0, where Q is an RG invariant
(solution of the DQ = 0 equation), given in perturbation theory by

Q = f1α
2
0 + g1δ

2
0 + 2g2α

2
0δ0 + F2δ

3
0 + · · · (15)

where F2 = 2
3g3 − 2

3g1 + 2g1

3f1
J . Now Q, being an RG invariant, can almost be treated as if it

were a numerical constant and δ0 as the ‘true’ coupling. The beta-function in these variables
is

β(δ0,Q) = Q + 2δ2
0 + AQδ0 + Bδ3

0 + · · · (16)

where A = 1 − J/f1 and B = 2(A − g3)/3.
It is well known that the SG model can also be formulated in terms of two fermion

fields, interacting with a chirally symmetric current–current interaction [1]. A special case
of the two-fermion model corresponds to the SU(2)-symmetric chiral Gross–Neveu model.
This correspondence is evident in the bootstrap aproach, since the SG S-matrix in the
limit β0 → √

8π becomes the SU(2) chiral Gross–Neveu S-matrix. This AF model has to
correspond to one of the possible RG trajectories in the two-parameter SG language. It is easy
to see that it has to be the Q = 0 trajectory, since this is the only trajectory going through the
origin (δ0 = α0 = 0) of the parameter space. More precisely, the chiral Gross–Neveu model
must correspond to the negative half of the Q = 0 trajectory, which is a UV AF trajectory.
Making the identification

δ0 = − 1

π
g2 (17)

where g is the coupling of the SU(2) Gross–Neveu model, the Gross–Neveu beta-function
becomes

β(g) = − 1

π
g3 +

B

2π2
g5 + · · · . (18)

Using the results of Amit et al (equation (6)), B = 2, and using the results of [3] and [4]
(equation (7)), B = 4/3, and finally B = 8/3 if we trust [5] (equation (8)). Comparing (18)
to the results of the beta-function calculations performed directly in the fermion language [6]
we see that the correct Gross–Neveu beta-function is reproduced if B = 2. Thus the two-loop
results of Amit et al [2] are correct after all! This was the observation† that served as our
motivation for the present study. The correctness of the two-loop Gross–Neveu beta-function
coefficient has been checked by studying the system in the presence of an external field [7].
Using this method the value of this coefficient can be read off from the bootstrap S-matrix and
the results are in agreement with [6].

We now turn to the explicit calculation of the renormalization parameters (4), (5). The
first quantity we consider is the two-point function of the U(1)-current Jµ = i β0

2π εµν∂νφ,

〈Jµ(x)Jν(y)〉 =
∫

d2p

(2π)2

(
pµpν

p2
− δµν

)
eip(x−y)I (p). (19)

The advantage of considering this physical quantity is that it is IR stable. Putting m0 = 0 we
find

I (p) = 2

π

{
1 + δ0 +

α2
0

32

(
lnpa + K +

1

2

)
+
α2

0δ0

16
(lnpa + K)2 + · · ·

}
(20)

† We thank P Forgács who made this observation first and called our attention to it.
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where K = −'′(1) − 1 − ln 2. Since the current is conserved there is no operator
renormalization required here and (20) must become finite after the substitutions (4), (5).
From this requirement we obtain

f1 = 1
32 g1 = −2 f2 = − 3

32 . (21)

To determine the remaining two-loop coefficients g2 and g3 we have to calculate Zα , the
renormalization constant corresponding to α0. For this purpose we need a quantity with a
perturbative series starting at O(α0). We have chosen the 2n-point correlation function

X = 〈A(x1) . . .A(x2n)〉 (22)

where

A(x) =
(

1

a

) 1
2n2

exp

(
iβ0

2n
φ(x)

)
. (23)

Although, in contrast to the Noether current, the operator (23) needs to be renormalized, for
large enough n the dimension of (23) is so small that there is no operator mixing and the
operator renormalization constant can simply be determined from the correlation function

Y = 〈A(x1) . . .A(xn)A∗(y1) . . .A∗(yn)〉. (24)

A second-order calculation gives

Y = M
( 1
n2 )

{
1 +

δ0

n2
L +

δ2
0

2n4
L2 +

α2
0

64n3
L2

+L

(
α2

0

64n2
− α2

0

128

[
W

(
1

n

)
+ W

(
− 1

n

)])
+ · · ·

}
(25)

where

M =
∏

i<j |xi − xj |
∏

k<l |yk − yl|∏
i,k |xi − yk| (26)

L = lnMan and the dots stand for finite O(α2
0) terms as well as higher-order terms. W(µ) is

defined by

W(µ) = −1 +
∫ 1

0
dz zµF (µ,µ; 1; z) +

∫ 1

0

dz

z2
[F(µ,µ; 1; z) − 1 − µ2z] (27)

where F(α, β; γ ; z) is the standard hypergeometric function. Equation (25) can be made finite
by the renormalization YR = Z2nY , where

Z2n = 1 − 1

n
�δ +

1

2n2
�2δ2 +

1

64n
�2α2 + k1�α

2 + · · · (28)

with

k1 = − 1

64n
+

n

128

[
W

(
1

n

)
+ W

(
−1

n

)]
. (29)

For the 2n-point function X a second-order calculation gives

X = α0

16π
N

( 1
n2 )F

{
1 + δ04 +

1

2
δ2

04
2 +

nα2
0

128n + 64
4

[
4 + 4 +

1

n
− nW

(
1

n

)]
+ · · ·

}
(30)

where

N =
∏
i<j

|xi − xj | F =
∫

d2z
1∏

i |z − xi | 2
n

(31)
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and

4 = −1 +
1

n2
ln(Na−n(2n−1)) − 2

nF

∑
j

∫
d2z

ln | z−xj
a

|∏
i |z − xi | 2

n

. (32)

In (30) the dots represent finite terms of O(α2
0) and O(δ2

0) as well as higher terms.
RenormalizingX by requiringXR = Z2nX to be finite after coupling constant renormalization
gives

g3 = 0 and g2 = − 1

16
+

n

128

[
W

(
1

n

)
− W

(
−1

n

)]
. (33)

At first sight g2 seems to be n dependent, which would mean that the 2n-point function (22)
cannot really be made finite with wavefunction plus coupling constant renormalization.
Luckily, however, one can see that using the identity

W(µ) − W(−µ) = −2µ (|µ| < 1) (34)

satisfied by the hypergeometric function, g2 is equal to the n-independent constant − 5
64 .

Moreover, (33) together with (21) reproduce (6), the results of [2]. The nontrivial cancellation
of the n dependence makes us more confident that these are the correct two-loop coefficients.
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We would like to thank P Forgács for calling our attention to the fact that the results of [2]
reproduce the correct two-loop coefficients for the chiral Gross–Neveu model. We thank
R Konik for correspondence.

References

[1] Zinn-Justin J 1989 Quantum Field Theory and Critical Phenomena (Oxford: Oxford University Press)
[2] Amit D J, Goldschmidt Y Y and Grinstein G 1980 J. Phys. A: Math. Gen. 13 585
[3] Lovelace C 1986 Nucl. Phys. B 273 413
[4] Boyanovsky D 1989 J. Phys. A: Math. Gen. 22 2601
[5] Konik R M and LeClair A 1996 Nucl. Phys. B 479 619
[6] Destri C 1988 Phys. Lett. B 210 173

Destri C 1988 Phys. Lett. B 213 565 (erratum)
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